On a covering problem related to the centered Hardy-Littlewood maximal inequality
نویسندگان
چکیده
منابع مشابه
On the Integral Systems Related to Hardy-littlewood-sobolev Inequality
We prove all the maximizers of the sharp Hardy-Littlewood-Sobolev inequality are smooth. More generally, we show all the nonnegative critical functions are smooth, radial with respect to some points and strictly decreasing in the radial direction. In particular, we resolve all the cases left open by previous works of Chen, Li and Ou on the corresponding integral systems.
متن کاملOn the Polynomial Hardy–littlewood Inequality
We investigate the growth of the constants of the polynomial Hardy-Littlewood inequality.
متن کاملOn the Lp boundedness of the non-centered Gaussian Hardy-Littlewood Maximal Function
The purpose of this paper is to prove the L p (R n ; dd) boundedness, for p > 1, of the non-centered Hardy-Littlewood maximal operator associated with the Gaussian measure dd = e ?jxj 2 dx. Let dd = e ?jxj 2 dx be a Gaussian measure in Euclidean space R n. We consider the non-centered maximal function deened by Mf(x) = sup x2B 1 (B) Z B jfj dd; where the supremum is taken over all balls B in R ...
متن کاملOn the Hardy–Littlewood Majorant Problem
Let Λ ⊆ {1, . . . , N}, and let {an}n∈Λ be a sequence with |an| ≤ 1 for all n. It is easy to see that ∥∥∥∥ ∑ n∈Λ ane(nθ) ∥∥∥∥ p ≤ ∥∥∥∥ ∑ n∈Λ e(nθ) ∥∥∥∥ p for every even integer p. We give an example which shows that this statement can fail rather dramatically when p is not an even integer. This answers in the negative a question known as the Hardy-Littlewood majorant conjecture, thereby ruling ...
متن کاملOn the Variation of the Hardy–littlewood Maximal Function
We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 2003
ISSN: 0004-2080
DOI: 10.1007/bf02390819